Сдвиг что это

Сдвиг что это

Если к АРГУМЕНТУ функции добавляется константа, то происходит сдвиг (параллельный перенос) графика вдоль оси . Рассмотрим функцию и положительное число :

Правила:
1) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц влево;
2) чтобы построить график функции , нужно график сдвинуть ВДОЛЬ оси на единиц вправо.

Пример 6

Построить график функции

Берём параболу и сдвигаем её вдоль оси абсцисс на 1 единицу вправо:

«Опознавательным маячком» служит значение , именно здесь находится вершина параболы .

Теперь, думаю, ни у кого не возникнет трудностей с построением графика (демонстрационный пример начала урока) – кубическую параболу нужно сдвинуть на 2 единицы влево.

Вот ещё один характерный случай:

Пример 7

Построить график функции

Гиперболу (чёрный цвет) сдвинем вдоль оси на 2 единицы влево:

Перемещение гиперболы «выдаёт» значение, которое не входит в область определения функции. В данном примере , иуравнение прямой задаёт вертикальную асимптоту(красный пунктир) графика функции (красная сплошная линия). Таким образом, при параллельном переносе асимптота графика тоже сдвигается (что очевидно).

Вернёмся к тригонометрическим функциям:

Пример 8

Построить график функции

График синуса (чёрный цвет) сдвинем вдоль оси вдоль оси на влево:

Внимательно присмотримся к полученному красному графику …. Это в точности график косинуса ! По сути, мы получили геометрическую иллюстрацию формулы приведения , и перед вами, пожалуй, самая «знаменитая» формула, связывающая данные тригонометрические функции. График функции получается путём сдвига синусоиды вдоль оси на единиц влево (о чём уже говорилось на уроке Графики и свойства элементарных функций). Аналогично можно убедиться в справедливости любой другой формулы приведения.

Рассмотрим композиционное правило, когда аргумент представляет собой линейную функцию: , при этом параметр «ка» не равен нулю или единице, параметр «бэ» – не равеннулю. Как построить график такой функции? Из школьного курса мы знаем, что, что умножение имеет приоритет перед сложением, поэтому, казалось бы, сначала график сжимаем/растягиваем/отображаем в зависимости от значения , а потом сдвигаем на единиц. Но здесь есть подводный камень, и корректный алгоритм таков:

Аргумент функции необходимо представить в виде и последовательно выполнить следующие преобразования:

1) График функции сжимаем (или растягиваем) к оси (от оси) ординат: (если , то график дополнительно следует отобразить симметрично относительно оси ).

2) График полученной функции сдвигаем влево (или вправо) вдоль оси абсцисс на (!!!) единиц, в результате чего будет построен искомый график .

Пример 9

Построить график функции

Представим функцию в виде и выполним следующие преобразования: синусоиду (чёрный цвет):

1) сожмём к оси в два раза: (синий цвет);
2) сдвинем вдоль оси на(!!!) влево: (красный цвет):

Пример вроде бы несложный, а пролететь с параллельным переносом легче лёгкого. График сдвигается на , а вовсе не на .

Продолжаем расправляться с функциями начала урока:

Пример 10

Построить график функции

Представим функцию в виде . В данном случае: Построение проведём в три шага. График натурального логарифма :

1) сожмём к оси в 2 раза: ;
2) отобразим симметрично относительно оси : ;
3) сдвинем вдоль оси на(!!!) вправо: :

Для самоконтроля в итоговую функцию можно подставить пару значений «икс», например, и свериться с полученным графиком.

В рассмотренных параграфах события происходили «горизонтально» – гармонь играет, ноги пляшут влево/вправо. Но похожие преобразования происходят и в «вертикальном» направлении – вдоль оси . Принципиальное отличие состоит в том, что связаны они не с АРГУМЕНТОМ, а с САМОЙ ФУНКЦИЕЙ.

Растяжение (сжатие) графика ВДОЛЬ оси ординат.
Симметричное отображение графика относительно оси абсцисс

Структура второй части статьи будет очень похожа.

1) Если ФУНКЦИЯ умножается на число , то происходитрастяжение её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции растянуть вдоль оси в раз.

2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции сжать вдоль оси в раз.

Догадайтесь, какую функцию я буду снова пытать =)

Пример 11

Построить графики функций .

Берём синусоиду за макушку/пятки:

И вытягиваем её вдоль оси в 2 раза:

Период функции не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .

Теперь сожмём синусоиду вдоль оси в 2 раза:

Аналогично, период не изменился, но область значений функции «сплющилась» в два раза: .

Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций (Примеры №№1,3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи. Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач высшей математики!

И, конечно же, классический пример растяжения/сжатия параболы:

Пример 12

Построить графики функций .

Возьмём рога молодого оленя и вытянем их вверх вдоль оси в два раза: . Затем сожмём вдоль оси ординат в 2 раза:

И снова заметьте, что значения функции увеличиваются в 2 раза, а значения уменьшаются во столько же раз (исключение составляет точка ).

Отпустим в тундру удивлённое животное и продолжим изучать умножение функции на число: . Случаи не представляют интереса, поэтому рассмотрим отрицательные коэффициенты. Сначала распространённый частный случай :

Если ФУНКЦИЯ меняет знакна противоположный, то её график отображается симметрично относительно оси абсцисс.

Правило: чтобы построить график функции , нужно график отобразить симметрично относительно оси .

Пример 13

Построить график функции

Отобразим синусоиду симметрично относительно оси :

Ещё более наглядно симметрия просматривается у следующей типовой функции:

Пример 14

Построить график функции

График функции получается путём симметричного отображения графика относительно оси абсцисс:

Функции задают две ветви параболы, которая «лежит на боку». Обратная функция задаёт параболу целиком. С подобными графиками часто приходится иметь дело при нахождении площадей фигур, построении областей интегрирования двойных интегралов и в некоторых других задачах.

При умножении функции на отрицательное число , , построение графика следует выполнить в два этапа: сжатие (или растяжение) вдоль оси ординат, а потом – симметричное отображение относительно оси абсцисс. Конкретные примеры увидим в следующем топике.

Не нашли то, что искали? Воспользуйтесь поиском:



Источник: studopedia.ru


Добавить комментарий